2^x = 3^x как решать
Ответы на вопрос
Ответил Xrite
0
1)Solve for x over the integers:
2^x==3^x
2)Take the natural logarithm of both sides and use the identity log(a^b)==b log(a):
log(2) x==log(3) x
3)Subtract x log(3) from both sides:
(log(2)-log(3)) x==0
4)Divide both sides by log(2)-log(3):
Answer: x==0
2^x==3^x
2)Take the natural logarithm of both sides and use the identity log(a^b)==b log(a):
log(2) x==log(3) x
3)Subtract x log(3) from both sides:
(log(2)-log(3)) x==0
4)Divide both sides by log(2)-log(3):
Answer: x==0
Новые вопросы
Қазақ тiлi,
2 года назад
Математика,
2 года назад
Биология,
9 лет назад
Геометрия,
9 лет назад
Алгебра,
10 лет назад
История,
10 лет назад