2^(2x+1) + 3^ (2x+1) = 5* 6^x
Ответы на вопрос
Решение очень простое, достаточно обе части разделить на 6^х и получится примитивное квадратное уравнение, гляди
2*2^x + 3*3^x = 5*2^x*3^x вот теперь разделим на 6^x
2*(2/3)^x + 3*(3/2)^x =1 Обозначим (2/3)^x = a, получим
2*a +3/a =1
2*a^2 -5*a +3 = 0, откуда а=3/2, а=1, то есть
(2/3)^x =3/2 (2/3)^x = 1
x=-1 x=0
Вот и всё.
разделим обе части равенства на 6^x (6^x не равно 0) 6^x = (2*3)^x = 2^x * 3^x
2^(2x+1-x) / 3^x + 3^(2x+1-x) / 2^x = 5
2^(x+1) / 3^x + 3^(x+1) / 2^x = 5
2 * (2/3)^x + 3 * (3/2)^x = 5 ___ обозначим (2/3)^x === y
2y + 3/y = 5
2y^2 - 5y + 3 = 0 (y тоже не равно 0)
D = 25 - 4*2*3 = 1
y1 = (5+1)/4 _____ y2 = (5-1)/4
y1 = 3/2 _____ y2 = 1
(2/3)^x = (2/3)^(-1) _____ (2/3)^x = (2/3)^0
x1 = -1 _____ x2 = 0