17.2. Докажите, что в кубе ABCDA1B1C1D1 перпендикулярны плоскости: а) ABC и BDD1; б) ACC1 и BDD1.
Ответы на вопрос
Ответил sashasivkov547
2
Ответ:оплалвиаьршаиадпоащрладеоп
Объяснение:чолашалалн лвлптрлпвд алщадеьр ладедр
wedrft2:
фу
Ответил golcerelizaveta104
1
Ответ:
Решение:
а)
AA₁ ⊥ AB, AA₁ ⊥ AD и AD ║ BC (по условию)⇒ AA₁ ⊥ (ABC) по признаку перпендикулярности прямой и плоскости
б)
AB ⊥ BC, (по условию), AB ⊥ BB₁ и BB₁ ║ CC₁ (по условию) ⇒ AB ⊥ (BCC₁) по признаку перпендикулярности прямой и плоскости
в) (зеленые линии на чертеже)
AB₁ ⊥ A₁B и A₁B ║ CD₁ ⇒ AB₁ ⊥ CD₁ (1)
BC ⊥ (ABB₁) и AB₁ ⊂ (ABB₁) ⇒ BC ⊥ AB₁ (2)
(1) и (2) ⇒ AB₁ ⊥ (BCD₁) - признак!
Новые вопросы
Немецкий язык,
2 года назад
Математика,
6 лет назад