15 БАЛЛОВ
Известно, что векторы а и a+b коллинеарны. Коллинеарны ли векторы a и b?
Подробно объяснить (Можно с рисунком)
(И, пожалуйста, не берите ответы из интернета...)
Ответы на вопрос
Ответил moboqe
0
Ответ:
Да, коллинеарны.
Объяснение:
По условию векторы a и b - коллинеарные векторы.
Пусть,
a={x1;y1;z1}
b={x2;y2;z2}
a+b={x1+x2;y1+y2;z1+z2}
Тогда по условию коллинеарности
x1/x2=y1/y2=z1/z2=k
тогда координаты вектора b можно переписать в виде:
b={k*x1;k*y1;k*z1}
Вектор a+b примет вид:
a+b={x1+k*x1;y1+k*y1;z1+k*z1}
Проверим выполняется ли условие коллинеарности:
x1/(x1+k*x1)=y1/(y1+k*x1)=z1/(z1+k*z1)
x1/(x1*(k+1))=y1/(y1*(k+1))=z1/(z1*(k+1))
1/(k+1)=1/(k+1)=1/(k+1)
Соотношения равны ⇒ условие коллинеарности соблюдено и вектора коллинеарны
Ответил moboqe
0
выразил из соотношения x1/(x1+x2)=y1/(y1+y2)=k
Ответил moboqe
0
Моя ошибка, я не прочитал внимательно условие задания
Ответил denandreev2001
0
х1=k(x1+x2)
Ответил moboqe
0
да
Ответил moboqe
0
теперь выражайте дальше
Новые вопросы
Русский язык,
2 года назад
Русский язык,
2 года назад
Математика,
7 лет назад
Алгебра,
7 лет назад
Обществознание,
9 лет назад