1. Вычислите производную данной функции:
а). 
б). ![y= sqrt[5]{ x^{2} } y= sqrt[5]{ x^{2} }](https://tex.z-dn.net/?f=y%3D+sqrt%5B5%5D%7B+x%5E%7B2%7D+%7D+)
в). 
г). ![y= sqrt[3]{7-6x} y= sqrt[3]{7-6x}](https://tex.z-dn.net/?f=y%3D+sqrt%5B3%5D%7B7-6x%7D+)
д). 
е). ![y= sqrt[6]{ x^{5} } +4 y= sqrt[6]{ x^{5} } +4](https://tex.z-dn.net/?f=y%3D+sqrt%5B6%5D%7B+x%5E%7B5%7D+%7D+%2B4)
ж). ![y= sqrt[3]{ x^{2} } ( x^{0,75}+1) y= sqrt[3]{ x^{2} } ( x^{0,75}+1)](https://tex.z-dn.net/?f=y%3D+sqrt%5B3%5D%7B+x%5E%7B2%7D+%7D+%28+x%5E%7B0%2C75%7D%2B1%29+)
з). 
и). 
к). ![y= sqrt[9]{ x^{7} }-7 y= sqrt[9]{ x^{7} }-7](https://tex.z-dn.net/?f=y%3D+sqrt%5B9%5D%7B+x%5E%7B7%7D+%7D-7+)
л). ![y= frac{ sqrt[5]{ x^{3} } -2}{ x^{0,3} } y= frac{ sqrt[5]{ x^{3} } -2}{ x^{0,3} }](https://tex.z-dn.net/?f=y%3D+frac%7B+sqrt%5B5%5D%7B+x%5E%7B3%7D+%7D+-2%7D%7B+x%5E%7B0%2C3%7D+%7D+)
м). 
2. а). Найдите угловой коэффициент касательной к графику функции
в точке x=1.
б). Найдите скорость изменения функции
в точке x=4.
в). Найдите скорость изменения функции
в точке x=9.
Ответы на вопрос
Ответил arsenlevadniy
0
1а.

1б.
![y= sqrt[5]{ x^{2} }, y'= (sqrt[5]{ x^{2} })'=(x^{ frac{2}{5} })'=frac{2}{5}x^{ -frac{3}{5} }=frac{2}{5x^{ frac{3}{5} }}=frac{2}{5 sqrt[5]{x^3} }; y= sqrt[5]{ x^{2} }, y'= (sqrt[5]{ x^{2} })'=(x^{ frac{2}{5} })'=frac{2}{5}x^{ -frac{3}{5} }=frac{2}{5x^{ frac{3}{5} }}=frac{2}{5 sqrt[5]{x^3} };](https://tex.z-dn.net/?f=y%3D+sqrt%5B5%5D%7B+x%5E%7B2%7D+%7D%2C+y%27%3D+%28sqrt%5B5%5D%7B+x%5E%7B2%7D+%7D%29%27%3D%28x%5E%7B+frac%7B2%7D%7B5%7D+%7D%29%27%3Dfrac%7B2%7D%7B5%7Dx%5E%7B+-frac%7B3%7D%7B5%7D+%7D%3Dfrac%7B2%7D%7B5x%5E%7B+frac%7B3%7D%7B5%7D+%7D%7D%3Dfrac%7B2%7D%7B5+sqrt%5B5%5D%7Bx%5E3%7D+%7D%3B)
1в.

1г.
![y= sqrt[3]{7-6x}, y'= (sqrt[3]{7-6x})'=((7-6x)^{frac{1}{3}})'= \ = frac{1}{3}(7-6x)^{-frac{2}{3}}cdot(7-6x)'= frac{1}{3(7-6x)^{frac{2}{3}}}cdot(-6)=-frac{2}{ sqrt[3]{(7-6x)^2} }; y= sqrt[3]{7-6x}, y'= (sqrt[3]{7-6x})'=((7-6x)^{frac{1}{3}})'= \ = frac{1}{3}(7-6x)^{-frac{2}{3}}cdot(7-6x)'= frac{1}{3(7-6x)^{frac{2}{3}}}cdot(-6)=-frac{2}{ sqrt[3]{(7-6x)^2} };](https://tex.z-dn.net/?f=y%3D+sqrt%5B3%5D%7B7-6x%7D%2C+y%27%3D+%28sqrt%5B3%5D%7B7-6x%7D%29%27%3D%28%287-6x%29%5E%7Bfrac%7B1%7D%7B3%7D%7D%29%27%3D+%5C+%3D+frac%7B1%7D%7B3%7D%287-6x%29%5E%7B-frac%7B2%7D%7B3%7D%7Dcdot%287-6x%29%27%3D+frac%7B1%7D%7B3%287-6x%29%5E%7Bfrac%7B2%7D%7B3%7D%7D%7Dcdot%28-6%29%3D-frac%7B2%7D%7B+sqrt%5B3%5D%7B%287-6x%29%5E2%7D+%7D%3B)
1д.

1е.
![y= sqrt[6]{ x^{5} } +4, y'= (sqrt[6]{ x^{5} } +4)'=(x^ frac{5}{6} )'= frac{5}{6} x^{- frac{1}{6}}= frac{5}{6 sqrt[6]{x} } ; y= sqrt[6]{ x^{5} } +4, y'= (sqrt[6]{ x^{5} } +4)'=(x^ frac{5}{6} )'= frac{5}{6} x^{- frac{1}{6}}= frac{5}{6 sqrt[6]{x} } ;](https://tex.z-dn.net/?f=y%3D+sqrt%5B6%5D%7B+x%5E%7B5%7D+%7D+%2B4%2C+y%27%3D+%28sqrt%5B6%5D%7B+x%5E%7B5%7D+%7D+%2B4%29%27%3D%28x%5E+frac%7B5%7D%7B6%7D+%29%27%3D+frac%7B5%7D%7B6%7D+x%5E%7B-+frac%7B1%7D%7B6%7D%7D%3D+frac%7B5%7D%7B6+sqrt%5B6%5D%7Bx%7D+%7D+%3B)
1ж.
![y= sqrt[3]{ x^{2} } ( x^{0,75}+1) , y'=(sqrt[3]{ x^{2} })' ( x^{0,75}+1)+sqrt[3]{ x^{2} } ( x^{0,75}+1)'= \ = frac{2}{3} x^{- frac{1}{3} }( x^{0,75}+1)+sqrt[3]{ x^{2} } cdot0,75x^{-0,25}= \ = frac{2}{3 sqrt[3]{x} } ( x^{0,75}+1)+0,75x^{-0,25}sqrt[3]{ x^{2} }; y= sqrt[3]{ x^{2} } ( x^{0,75}+1) , y'=(sqrt[3]{ x^{2} })' ( x^{0,75}+1)+sqrt[3]{ x^{2} } ( x^{0,75}+1)'= \ = frac{2}{3} x^{- frac{1}{3} }( x^{0,75}+1)+sqrt[3]{ x^{2} } cdot0,75x^{-0,25}= \ = frac{2}{3 sqrt[3]{x} } ( x^{0,75}+1)+0,75x^{-0,25}sqrt[3]{ x^{2} };](https://tex.z-dn.net/?f=y%3D+sqrt%5B3%5D%7B+x%5E%7B2%7D+%7D+%28+x%5E%7B0%2C75%7D%2B1%29+%2C+y%27%3D%28sqrt%5B3%5D%7B+x%5E%7B2%7D+%7D%29%27+%28+x%5E%7B0%2C75%7D%2B1%29%2Bsqrt%5B3%5D%7B+x%5E%7B2%7D+%7D+%28+x%5E%7B0%2C75%7D%2B1%29%27%3D+%5C+%3D+frac%7B2%7D%7B3%7D+x%5E%7B-+frac%7B1%7D%7B3%7D+%7D%28+x%5E%7B0%2C75%7D%2B1%29%2Bsqrt%5B3%5D%7B+x%5E%7B2%7D+%7D+cdot0%2C75x%5E%7B-0%2C25%7D%3D+%5C+%3D+frac%7B2%7D%7B3+sqrt%5B3%5D%7Bx%7D+%7D+%28+x%5E%7B0%2C75%7D%2B1%29%2B0%2C75x%5E%7B-0%2C25%7Dsqrt%5B3%5D%7B+x%5E%7B2%7D+%7D%3B)
1з.

1и.

1к.
![y= sqrt[9]{ x^{7} }-7 , y'= frac{7}{9 sqrt[9]{x^2} } ; y= sqrt[9]{ x^{7} }-7 , y'= frac{7}{9 sqrt[9]{x^2} } ;](https://tex.z-dn.net/?f=y%3D+sqrt%5B9%5D%7B+x%5E%7B7%7D+%7D-7+%2C+y%27%3D+frac%7B7%7D%7B9+sqrt%5B9%5D%7Bx%5E2%7D+%7D+%3B)
1л.
![y= frac{ sqrt[5]{ x^{3} } -2}{ x^{0,3} } , y'= frac{ (sqrt[5]{ x^{3} } -2)'x^{0,3} - (sqrt[5]{ x^{3} } -2)(x^{0,3})'}{ (x^{0,3})^2 } = \ = frac{ frac{3}{5sqrt[5]{ x^{2} }} x^{0,3} -0,3x^{-0,7} (sqrt[5]{ x^{3} } -2)}{x^{0,6} }; y= frac{ sqrt[5]{ x^{3} } -2}{ x^{0,3} } , y'= frac{ (sqrt[5]{ x^{3} } -2)'x^{0,3} - (sqrt[5]{ x^{3} } -2)(x^{0,3})'}{ (x^{0,3})^2 } = \ = frac{ frac{3}{5sqrt[5]{ x^{2} }} x^{0,3} -0,3x^{-0,7} (sqrt[5]{ x^{3} } -2)}{x^{0,6} };](https://tex.z-dn.net/?f=y%3D+frac%7B+sqrt%5B5%5D%7B+x%5E%7B3%7D+%7D+-2%7D%7B+x%5E%7B0%2C3%7D+%7D+%2C+y%27%3D+frac%7B+%28sqrt%5B5%5D%7B+x%5E%7B3%7D+%7D+-2%29%27x%5E%7B0%2C3%7D+-+%28sqrt%5B5%5D%7B+x%5E%7B3%7D+%7D+-2%29%28x%5E%7B0%2C3%7D%29%27%7D%7B+%28x%5E%7B0%2C3%7D%29%5E2+%7D+%3D+%5C+%3D+frac%7B++frac%7B3%7D%7B5sqrt%5B5%5D%7B+x%5E%7B2%7D+%7D%7D+x%5E%7B0%2C3%7D+-0%2C3x%5E%7B-0%2C7%7D+%28sqrt%5B5%5D%7B+x%5E%7B3%7D+%7D+-2%29%7D%7Bx%5E%7B0%2C6%7D+%7D%3B)
1м.

2а.

2б.
![y= sqrt[3]{3x-4} , x_0=4, \
y'= frac{1}{3 sqrt[3]{(3x-4)^2} } cdot3=frac{1}{ sqrt[3]{(3x-4)^2} } , \
y'_{x_0}=frac{1}{ sqrt[3]{(3cdot4-4)^2} }=frac{1}{ sqrt[3]{64}}=frac{1}{ sqrt[3]{2^6}}=frac{1}{ 2^3}=frac{1}{8}; y= sqrt[3]{3x-4} , x_0=4, \
y'= frac{1}{3 sqrt[3]{(3x-4)^2} } cdot3=frac{1}{ sqrt[3]{(3x-4)^2} } , \
y'_{x_0}=frac{1}{ sqrt[3]{(3cdot4-4)^2} }=frac{1}{ sqrt[3]{64}}=frac{1}{ sqrt[3]{2^6}}=frac{1}{ 2^3}=frac{1}{8};](https://tex.z-dn.net/?f=y%3D+sqrt%5B3%5D%7B3x-4%7D+%2C+x_0%3D4%2C+%5C%0Ay%27%3D+frac%7B1%7D%7B3+sqrt%5B3%5D%7B%283x-4%29%5E2%7D+%7D+cdot3%3Dfrac%7B1%7D%7B+sqrt%5B3%5D%7B%283x-4%29%5E2%7D+%7D+%2C+%5C%0Ay%27_%7Bx_0%7D%3Dfrac%7B1%7D%7B+sqrt%5B3%5D%7B%283cdot4-4%29%5E2%7D+%7D%3Dfrac%7B1%7D%7B+sqrt%5B3%5D%7B64%7D%7D%3Dfrac%7B1%7D%7B+sqrt%5B3%5D%7B2%5E6%7D%7D%3Dfrac%7B1%7D%7B+2%5E3%7D%3Dfrac%7B1%7D%7B8%7D%3B)
2в.
![y= sqrt[4]{(8x+9) ^{3} }, x_0=9, \
y'= frac{3}{4sqrt[4]{8x+9} } cdot8= frac{3}{2sqrt[4]{8x+9} }; \
y'_{x_0}= frac{3}{2sqrt[4]{8cdot9+9} }=frac{3}{2sqrt[4]{(8+1)cdot9} }=frac{3}{2sqrt[4]{9^2} }=frac{3}{2sqrt[4]{3^4} }=frac{3}{2cdot3 }=frac{1}{2}. y= sqrt[4]{(8x+9) ^{3} }, x_0=9, \
y'= frac{3}{4sqrt[4]{8x+9} } cdot8= frac{3}{2sqrt[4]{8x+9} }; \
y'_{x_0}= frac{3}{2sqrt[4]{8cdot9+9} }=frac{3}{2sqrt[4]{(8+1)cdot9} }=frac{3}{2sqrt[4]{9^2} }=frac{3}{2sqrt[4]{3^4} }=frac{3}{2cdot3 }=frac{1}{2}.](https://tex.z-dn.net/?f=y%3D+sqrt%5B4%5D%7B%288x%2B9%29+%5E%7B3%7D+%7D%2C+x_0%3D9%2C+%5C%0Ay%27%3D+frac%7B3%7D%7B4sqrt%5B4%5D%7B8x%2B9%7D+%7D+cdot8%3D+frac%7B3%7D%7B2sqrt%5B4%5D%7B8x%2B9%7D+%7D%3B+%5C%0Ay%27_%7Bx_0%7D%3D+frac%7B3%7D%7B2sqrt%5B4%5D%7B8cdot9%2B9%7D+%7D%3Dfrac%7B3%7D%7B2sqrt%5B4%5D%7B%288%2B1%29cdot9%7D+%7D%3Dfrac%7B3%7D%7B2sqrt%5B4%5D%7B9%5E2%7D+%7D%3Dfrac%7B3%7D%7B2sqrt%5B4%5D%7B3%5E4%7D+%7D%3Dfrac%7B3%7D%7B2cdot3+%7D%3Dfrac%7B1%7D%7B2%7D.)
1б.
1в.
1г.
1д.
1е.
1ж.
1з.
1и.
1к.
1л.
1м.
2а.
2б.
2в.
Новые вопросы