1)найти критич.точки
2)найти экстремумы
3)найти промежутки возрастания и убывания
4)построить график
5)найти наиб и наим
У(х)=x^3-x^2-x+2
Ответы на вопрос
Ответил nKrynka
0
y = x^3-x^2-x+2
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x2-2x-1
Находим нули функции. Для этого приравниваем производную к нулю
3x2-2x-1 = 0
Откуда:
x1 = -1/3
x2 = 1
(-∞ ;-1/3) f'(x) > 0 функция возрастает
(-1/3; 1) f'(x) < 0 функция убывает
(1; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = -1/3 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1/3 - точка максимума. В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума.
2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.
f''(x) = 6x-2
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
6x-2 = 0
Откуда точки перегиба:
x1 = 1/3
(-∞ ;1/3) f''(x) < 0 функция выпукла
(1/3; +∞) f''(x) > 0 функция вогнута
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x2-2x-1
Находим нули функции. Для этого приравниваем производную к нулю
3x2-2x-1 = 0
Откуда:
x1 = -1/3
x2 = 1
(-∞ ;-1/3) f'(x) > 0 функция возрастает
(-1/3; 1) f'(x) < 0 функция убывает
(1; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = -1/3 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1/3 - точка максимума. В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума.
2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.
f''(x) = 6x-2
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
6x-2 = 0
Откуда точки перегиба:
x1 = 1/3
(-∞ ;1/3) f''(x) < 0 функция выпукла
(1/3; +∞) f''(x) > 0 функция вогнута
Новые вопросы